Supplementary Item 2. Data fitting, systematic errors, accuracy and precision

Data fitting by non-linear least squares regression

The analytical data for each profile were fitted as a function of distance from the interface to Eqn. (1) by a standard non-linear least squares technique, i.e., minimizing the weighted sum of squares:
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subject to the condition imposed by Eqn. 1, to refine the parameters ci (the concentration at the interface, x=0), co (the initial concentration), and (DMt)1/2. It needs to be emphasised that in the typical least squares problem encountered in most scientific data analysis (certainly in fitting diffusion profiles), the estimated uncertainties on the data are of the same importance as the data themselves, as shown by Eqn. A1. The least-squares formulation has a rigorous basis for the problem at hand, because the residuals, being mainly due to measurement error, are expected a priori to be normally distributed.

For the purpose of discussing the data fitting, two additional examples of profiles are given in Fig. A1a, chosen to show on the one hand an element diffusing into the olivine with negligible original concentration (Y), and, on the other, an element diffusing out (Li); both examples are taken from the same profile. The concentrations of both elements lie in the 0 to 2 µg g-1 range, appropriate for natural concentrations (co for Li is the natural concentration), but hard to study quantitatively by other methods. There is no computational difficulty with the non-linear least squares fitting procedure, which is the usual one for a simple non-linear problem such as here - that is, fitting to a single function, without correlated uncertainties, as described by Deming (1943); see also Albarede (1995, pp. 273-275). The fits converge to a unique solution, except for several of the profiles for Ca and some for Na, which did not converge to any solution. The physical reasons behind the non-convergence are the flatness of the profiles in relation to noise in the data for Ca, and the difficulty in defining the interface value for Na, which is discussed further below. Even for these profiles, accurate fits could still be obtained by changing values of (DMt)1/2 and monitoring chi-squared, using values of co obtained from averaging the distal portions of the profiles; the values of ci were still refined. The parameters from these fits agree well with those from the Ca or Na profiles that did converge. In no case, for any element, did the procedure converge to a local minimum; no local minima are expected from inspection of either the data themselves (Fig A1a) or of Eqn.1, as the function is virtually monotonic, with a single minimum in the one-dimensional chi-squared “surface” defined by varying (DMt)1/2 at constant ci and co. It is obvious that quite accurate values of ci and co can be obtained instantly by visual inspection of the data (e.g., Fig. A1a), but the value of (DMt)1/2 can also be eyeballed to about ± 20% with only a little experience, as this parameter just reflects the distance over which diffusion takes place. Note that erf(y) [image: image2.wmf] y (to within a few percent) for 0 < y < ~0.75, i.e., the function is very close to linear over the distance that shows the effect of diffusion. 


Data were weighted according to (c(x) = s0 + s1 c(x), where s0 is one third of the limit of detection as customarily defined, and may be estimated robustly for elements near their detection limit in the olivine from the distal portions of the profiles. For our analytical conditions, s0 was 5 ng g-1 for Be, 2 ng g-1 for Eu, 3 ng g-1 for Y, Gd and Yb and 0.2 µg g-1 for Ti; other elements are sufficiently far above detection limits that s0 is inconsequential. The value of s1 = 3% (except 5% for Be and Na, and in some profiles for Ca and Ti). These uncertainties apply to each individual datum (i.e., time slice) and are therefore higher than that returned from a spot analysis, which averages many tens of time slices. For those elements with co at or below the limit of detection (i.e., Be and the REEs), values of c(x) from individual times slices within the co region are obviously often zero or negative (due to background subtraction); these were corrected to the limit of detection. This correction was not needed for Y, as the co for this element (6 ng g-1) is sufficiently above the limit of detection. Profiles were fitted both “raw” and after smoothing by moving three-point averaging. The latter results in much improved fits as judged by chi-squared but introduces another source of serial correlation. Either way makes no significant difference to the best-fit values of the refined parameters.


The washout time for the LA-ICP-MS instrument at RSES is extremely rapid, due to the characteristics of the sample cell (Eggins et al. 2003). Typically, the counts for an element drop by an order of magnitude in one second. Only for Na does the pronounced drop in concentration near the olivine/melt interface (Fig. 4c) mean that signal washout causes elevated Na count rates close the interface, hence problems in defining ci. Another problem peculiar to Na in our experiment is loss from the melt by virtue of its volatility. It is likely that this happens early in the experiment, which would have little influence on the reported values of DNa, but if we are mistaken in this regard, then the reported values of DNa would be too slow. Due to interferences on its other isotopes, Ca was measured using the minor isotope 43Ca (isotopic abundance 0.143%). With the low amount of Ca in olivine (~103 µg g-1), this means that the counts for Ca are equivalent to those of a monoisotopic element of similar ionisation potential like Sc or Y at only the 1 µg g-1 level. Sodium is also poorly determined because it suffers from a huge background on the RSES instrument and is also present only at low levels in the original San Carlos olivine. It was not doped in the experiment, so our measurements are for diffusion of Na out of the olivine, starting from this low initial concentration. Accordingly, Ca and Na are the least well-determined of the elements that we analysed by LA ICP-MS. Moreover, they diffuse rather slowly, so profiles are shorter, which increases the uncertainties associated with deriving diffusion coefficients from the profiles.

Serial correlation


The nominal uncertainties calculated from the fitting procedure are very low, often less than ± 1% of (DMt)1/2 for profiles > 100µm (e.g., Fig. A1). The uncertainty on (DMt)1/2 decreases with both the length of the profile and the contrast between ci and co. For Ca, the nominal uncertainty reached ±5%, due both to the shortness and the flatness of the profiles (Fig. 4). However, these uncertainties are certainly too small, partly because of the effect of serial correlation (i.e., the value of one datum is not, statistically, completely independent of the adjacent data in the profile). The serial correlation may be seen in the raw data, particularly in the bumpiness evident in the co region of the Li profile (Fig. A1a). Note that serial correlation affects the uncertainties quoted on the best-fit parameters, not the parameters themselves, and may occur despite the residuals from the regression from the dataset as whole being normally distributed (as is the case with the present data). The problem is expected for data from LA ICP-MS scanning, because of overlap in the sample from one time slice with the next, with possibly a small contribution from the finite wash-out time, but it is also detectable in our electron microprobe data, perhaps due to overlapping excitation volumes (see Ganguly et al. 1988; incidentally, as regards the retrieval of the diffusion coefficients themselves, Ganguly et al. (1988) argue that the convolution effect from electron microprobe analyses is insignificant for profiles > 15 µm; all the profiles in this study are > 40µm).

Serial correlation of data is easily assessed using the Durbin-Watson dD-W statistic, defined as:



dD-W = [image: image3.wmf]
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where N is the number of data, and ∆c(x)i is the residual from the regression of the ith datum (see, for example, Hill and Flack 1987). Data with no serial correlation have dD-W = 2. Values of dD-W < 2 indicate positive serial correlation, whereas values of dD-W > 2 (4 is the upper limit) would indicate anti-correlation between the successive data, which is rare. Eqn. A2 as written tests for correlation between successive data, but it is straightforward to test for correlation two or more steps apart (i.e., by comparing the ith datum with i-2, etc.). For large N and three parameters (as here), dD-W <1.5 is significant at the 0.1% level. We find considerable variability in the values of even for the same element, with many profiles for the REEs and Y and also for some reason Ti showing very low dD-W. For the REEs, correcting to the limit of detection would be another artificial source of serial correlation. On the other hand, some profiles return dD-W reasonably close to 2. The values of dD-W for the profiles in Fig. A1 are 1.7 for Li, despite the bumps in the co region, and 1.1 for Y.


One consequence of the combination of the serial correlation effect with the morphology of the error function is that extending the region of analysis further and further out into the distal region where only co is being measured gives the appearance of reducing the uncertainty on (DMt)1/2, which is obviously an artefact. The problem of serial correlation of data obtained with depth profiling methods of analysis (like SIMS or Rutherford Back Scattering) would seem to be extreme, but has not been discussed, to our knowledge, in the geological literature on diffusion measurements (or other diffusion literature for that matter). This is probably not important as serial correlation affects the uncertainties on the best-fit parameters, not the parameters themselves, and other systematic errors are likely to dominate the uncertainties on experimental measurements, as discussed further below.

Non-random errors

The dominant sources of error in our method are those associated with the traversing technique, both systematic and non-systematic. The limiting factor is the spatial resolution achieved with the laser, which in this study is 6 µm, as measured along the diffusion profile, hence we can only use the method on profiles of a length substantially greater than this (here, > 50µm). Fluctuations in the rate of scanning of the stage, which are difficult to evaluate, may cause deviations from the true shape of diffusion profiles. The rectangular 120 x 6 µm beam must be orientated as exactly as possible to lie parallel to the interface; even a 3º misorientation would double the effective width of the beam (120 µm x sin(3) = 6 µm). Obviously, for all these factors, the shorter the profile, the greater the uncertainty in calculated diffusion coefficients, which also applies to the uncertainty in the position of the olivine/melt interface. This position is located to ±3 (m. For the profiles shown in Fig. A1, changing the position of the interface by 3 µm changes (4DMt)1/2 by 1.5 µm (Li) and 1.3 µm (Y), both less than 2%. Obviously the shorter the profile the greater the error in DM. The refined value of the interface concentration ci is much more sensitive to changes in the interface position, as may easily be appreciated from examination of Fig. A1a; because erf(y) [image: image4.wmf] y in this region of the profile, changing the position of the interface mostly changes ci while the slope appears hardly to change at all. A great advantage of the traversing method of analysis looking for several elements at a time (as here) is that it is impossible to mistake the interface, as the counts for some elements jump sharply up while others go down. Consequently there is no danger of confusing original zoning in the olivine with a diffusion profile.

Neither scan rate nor wash-out time are factors in the LA ICP-MS spot traverses. However, for these profiles, each spot represents an average analysis of a circular section (in two dimensions) across the profile that cannot be assumed to be small compared to the length of the profile. This compromise on spatial resolution in the spot traverses translates to uncertainties in DM values that are comparable to those for the scanning technique. 

Profiles measured by electron microprobe have somewhat better spatial resolution than scanning LA ICP-MS, but suffer from relatively poor analytical precision at the trace-element level. The procedure used for fitting of the electron microprobe data (see above) minimizes these analytical uncertainties by averaging over all scans; nonetheless, the criterion of reproducibility shows that the uncertainties on D values obtained from the electron microprobe traverses are slightly larger than for most of the LA ICP-MS data. Note that secondary X-ray fluorescence and stray electron effects may cause phantom diffusion profiles up to 200 µm in length if an element is present in the melt at orders of magnitude higher concentration than in the olivine – see Fig. 2 of Hermann et al. (2005) for an example involving Ti. In the present experiments this effect prohibits the use of the electron microprobe for determining profiles of Al and Ca.

Estimation of uncertainties from reproducibility

Because of the unquantifiable nature of the experimental uncertainties from variations in scanning rates, and the problem of serial correlation that is inescapable in fitting concentration profiles, we use reproducibility as our preferred measure of precision, that is, the observed standard deviation of a set of measurements. For scans parallel to [001], this is simply the standard deviation obtained from taking the mean of all scans. For scans for diffusion profiles between the [010] and [001] axes, the standard deviation is obtained from fitting DM to angle (). Errors in crystal orientation are estimated to be < 3%, which is trivial. Accuracy can be robustly evaluated for several elements (Ca, Mn, Fe, Co and Ni) by comparing our results to those in the literature obtained by entirely different experimental methods.

 A note on data fitting by inverting the error function


In the era before computers, least-squares fitting of an expression involving the error function was computationally prohibitive, and diffusion coefficients were extracted from the measured profiles graphically by taking the inverse of the error function:
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and then plotting the LHS on the y-axis against x. The resulting line may be fit “by eye” to give the slope 1/(4DMt)1/2. We show the relevant plots for our Li and Y examples in Fig. A1b, using values of ci and co from the non-linear regressions. While this procedure, if applied with common sense, should give good results for good data, there are several rather obvious mathematical problems:

1) The values of ci and co need to be guessed, as they are not refined. For co, this would not be a problem with traversing methods of analysis, but it may be for depth profiling, unless co= 0. Finding the best fit value of ci is important, however, because the nature of the data is such that ci and 1/(DMt)1/2 are highly correlated. 

2) The inverse error function is only defined where its argument is <1. Obviously in the co region of the profile, 50% of the data are expected to have (ci-c(x))/(ci-co) >1. Therefore about half the data in the distal region of the profile need to be discarded. A similar consideration would apply to data close to x=0, as erf-1 is also not defined for negative numbers (i.e., for c(x) > ci).

3) The principle of least squares is to minimise the weighted sum of the residuals squared, that is, the squares of the difference between observed and model values (Eqn. A1), and this principle does not disappear no matter how the conditional equation(s) might be manipulated. Accordingly, if the function [image: image6.wmf] is made the dependent variable, then this dependent variable should be weighted according to its own standard deviation (i.e., [image: image7.wmf], which is obtained, from the principle of error propagation, as:
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where:
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Note that the differential of erf-1 involves the exponential of erf-1 squared, so any simplicity to be gained by rearranging Eqn. 3 to Eqn. A3 is more apparent than real. In fact, the situation is rather more complex, because the uncertainties on ci and co should also be addressed, as these parameters are not being refined, unlike in the non-linear least-squares that we used.


Nevertheless, even ignoring this latter problem, it is still instructive to consider the uncertainties on the LHS of Eqn. A3 as propagated using Eqn. A4. We have calculated these uncertainties for our two example profiles and they are plotted in Fig A1b out to 170 µm. Beyond this point they become too large to plot neatly. The important point is that the uncertainties become very large as x increases towards the co region of the profile. If this is not explicitly taken into account, it is these highly uncertain data that effectively control the derived slope of the plot, particularly if a canned “linear regression” program is used to “fit” a straight line to the data. Thus the exact value of the slope depends on the arbitrary decision of where to truncate the data. Fitting by unweighted linear regression of the data to x = 150µm gave (DLit)1/2 = 104.1 and (DYt)1/2 = 69.2, which are within 2% of the best-fit values, but are arbitrary to the extent that slightly different values would be returned if the data were truncated at a different point. The uncertainties returned on the slope by such “linear regression” are meaningless. We are unaware of any plots of diffusion data presented in the geological literature in this linearized form that have included error bars; neither has the point chosen to make the truncation been discussed, although it is quite clear that the data from the co region is never plotted (it does not look impressive). Interestingly, the uncertainties on the LHS of Eqn. A3 do not increase monotonically along the profile, but become slightly larger very close to the interface (x=0), as c(x) [image: image10.wmf] ci. As mentioned above, if c(x) > ci, which may be expected statistically for the occasional time slice as x [image: image11.wmf] 0, then erf-1 is undefined.


It has often been claimed that if a straight line passing through the origin is obtained from a plot of the LHS of Eqn. 3A versus x, then this shows that the model fits the data. This is only true if the interface position or the value of ci are known independently. Otherwise, the correlation between ci and interface position that results from the linear nature of the error function means that both may be adjusted to still give the straight line through the origin, but with errors on (Dt)1/2 that may be as high as several 10%. The mistaken claim presumably arises because plotting the inverse error function (Fig. A1b) obscures the physical reality of the diffusion process that is obvious from the straightforward representation of the data, as in Fig. A1a.
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Figure A1. a) An example of Li and Y diffusion profiles. The fits from non-linear least-squares regression to Eqn 3 as described in the text are shown by the solid curves. These fits give for Li: (4DLi)1/2 = 102.9 ± 2.1 µm , [image: image13.wmf] = 1.3 with (c(x)(Li)= 0.03c(x), and for Y: (4DY)1/2 = 70.7 ± 0.3 µm, [image: image14.wmf] = 1.1 with (c(x)(Y)= 0.003 + 0.03 cY. The Durbin-Watson statistics (dD-W) are 1.7 and 1.1 respectively. These data were not smoothed. Three-point smoothing reduces the values of [image: image15.wmf] to 0.6 and 0.7 respectively, but dD-W blow out to 0.6 and 0.2. A representative error bar (± 2 ) is shown, for a concentration of 1.0 µg g-1.


b) Data in a) plotted after transformation of Eqn. 3 to Eqn. 3A by inverting the error function. The uncertainties (plotted as ± 1 , for clarity) are indicated to 170 µm only, as beyond this they become too large to be plotted with any semblance of neatness. Unweighted linear regression of the data to 150 µm, with the line constrained to pass through the origin, gave (4DLi)1/2 = 104.1 µm and (4DY)1/2  = 69.3 µm, both of which values are within about 2% of the best fit values. A two term linear regression returns intercepts within uncertainty of zero for both lines.

