Dr. Alex McCoy-West research focuses on using a wide range of geochemical tools to understand the processes involved in the formation, differentiation and evolution of the terrestrial planets and their major geochemical reservoirs. He is a geologist and geochemist with expertise in a large range of radiogenic (Sr-Nd-Hf-Pb-Os) and novel stable (Fe, Zn, Mo, and Nd) isotope systems.

His major scientific achievements include using Mo isotopes to demonstrate that twice the volume of the continental crust today was generated in the first billion years of Earth’s history, implying rapid crustal growth and destruction on the early Earth (McCoy-West et al., Nature Geoscience 2019). Dr. McCoy-West has been pioneering the development of double-spike neodymium (Nd) stable isotope analyses, the first measurements of this kind in the world (McCoy-West et al., EPSL, 2017). This powerful technique has many future applications as from a single measurement it simultaneously allows constraints to be placed on both the source or age of a material and the processes involved in its formation.

Dr. McCoy-West's current research focus is placing new constraints on continental emergence (when Earth's contienents emerged from the ocean). A multiple isotope record will be generated from Banded Iron Formations to track changes in the weathering flux and chemistry of Earth’s earliest oceans. He also continues to research and collaborate on a wide selection of projects using non-traditional stable isotopes to explore planetary formation, early crustal growth, igneous rocks, hydrothermal systems, weathering processes and mineralization.

--> I am currently looking for Honours, Master's and PhD candidates. Please feel free to contact me with any questions. <---

  • CS3002: Soil Mechanics and Geology (Level 3; TSV)
  • EA1110: Evolution of the Earth (Level 1; TSV)
  • EA2220: Minerals and Magmas (Level 2; CNS & TSV)
  • EA3130: Advanced Petrology (Level 3; TSV)
  • EA5048: Minerals and Magmas (Level 5; TSV)
  • Novel stable isotopes
  • Radiogenic isotopes
  • Igneous petrology
  • Planetary formation
  • Continental growth
  • Mass spectrometry
  • Geochemical modelling
  • Ore deposit formation
  • 2018 to 2021 - Research Fellow, Monsah Universiy (Melbourne, Australia)
  • 2016 to 2018 - Postdoctoral Research Fellow, Durham University (Durham, United Kingdom)
  • 2014 to 2016 - Postdoctoral Research Associate, Durham University (Durham, United Kingdom)
  • 2010 to 2014 - PhD, Australian National University (Canberra, Australia)
  • 2009 to 2010 - Geothermal Geologist, Institute of Geological and Nuclear Sciences (Taupo, New Zealand)
  • 2008 to 2009 - MSc (first class), Victoria University of Wellington (Wellington, New Zealand)
Research Disciplines
  • 2020 - Monash University Faculty of Science Award for Research Excellence by an Early Career Researcher (Finalist)
  • 2018 - United Kingdom Geochemistry Group Postdoctoral Paper Medal
  • 2013 - D.A. Brown Travel Scholarship
  • 2010 to 2014 - J.C. Jaegar PhD Scholarship
  • 2021 to 2024 - Discovery Early Career Research Fellowship
  • 2013 to 2020 - European Association of Geochemistry

These are the most recent publications associated with this author. To see a detailed profile of all publications stored at JCU, visit ResearchOnline@JCU. Hover over Altmetrics badges to see social impact.

Journal Articles
Other research outputs
Current Funding

Current and recent Research Funding to JCU is shown by funding source and project.

Australian Research Council - Discovery Early Career Researcher Award

Linking continental emergence and climatic evolution on the Early Earth

Indicative Funding
$447,627 over 3 years
This project aims to constrain the timing and extent to which the continents were emergent (above sealevel) at different times in Earth?s history and its impact on climatic evolution, which remains poorly understood. Continental emergence was a pivotal moment in the development of our habitable planet, because it controls the influx of bioessential elements (like phosphorus) to the oceans. Using innovative geochemical techniques, expected outcomes of this work include a detailed record of changes in ocean chemistry and a time integrated model of the amount of emergent crust on the early Earth. Documenting the impact of changes in the solid Earth on the evolution of life is of the highest interest to society in Australia and abroad.
Alexander McCoy-West (College of Science & Engineering)
Isotope geochemistry; Evolution of life; Continental emergence

The map shows research collaborations by institution from the past 7 years.
Note: Map points are indicative of the countries or states that institutions are associated with.

  • 5+ collaborations
  • 4 collaborations
  • 3 collaborations
  • 2 collaborations
  • 1 collaboration
  • Indicates the Tropics (Torrid Zone)

Connect with me
Share my profile
Share my profile:

Advisory Accreditation
Primary Advisor
Find me on…
Icon for Google Scholar profile Icon for ORCID profile Icon for Twitter profile page Icon for ResearchGate profile

Similar to me

  1. Dr Ioan Sanislav
    College of Science & Engineering
  2. Dr Chris Wurster
    College of Science & Engineering
  3. Prof Michael Bird
    College of Science & Engineering
  4. A/Prof Carl Spandler
    College of Science & Engineering
  5. Dr Brandon Mahan
    College of Science & Engineering